Sampling.java

315 lines | 12.937 kB Blame History Raw Download
package br.ufrgs.inf.prosoft.tigris.sampling;

import org.apache.commons.math3.distribution.BinomialDistribution;
import org.apache.commons.math3.ml.neuralnet.sofm.util.ExponentialDecayFunction;
import org.apache.commons.math3.stat.descriptive.DescriptiveStatistics;
import org.apache.commons.math3.stat.descriptive.SummaryStatistics;
import org.apache.commons.math3.stat.inference.TestUtils;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

import java.math.BigDecimal;
import java.util.Map;
import java.util.concurrent.ConcurrentHashMap;

/**
 * The sampling control and decision.
 */
public class Sampling {

    //constructor parameters - defined once
    private final boolean adaptiveSamplingRate;
    private final long cycleLengthInMilliseconds;
    private BinomialDistribution binomialDistSampling;
    private double samplingRate; // in percentage, 0 to 1

    //control vars
    private boolean performanceBaselineEnabled = false;

    // recreated every new monitoring cycle
    private long startTime;
    private ExponentialDecayFunction decayingPrecision;
    private FrequencyDataSet population = new FrequencyDataSet(), sample = new FrequencyDataSet();
    private PerformanceBaselineDataSet performanceBaselineDataSet = new PerformanceBaselineDataSet();
    private Map<Granularity, DescriptiveStatistics> lowestPerformanceBaselineDataSet = new ConcurrentHashMap<>();
    private Map<Granularity, DescriptiveStatistics> sampledDataSet = new ConcurrentHashMap<>();

    //PBA history
//    private Queue<PerformanceBaselineDataSet> lastFourPerformanceBaselineDataSets = new CircularFifoQueue<>(4);

    Logger logger = LoggerFactory.getLogger(Sampling.class);

    /**
     * z confidence value, ex: 1.96 for 95%
     * p proportion of the population, 0.5 is default
     * e margin of error, ex: 0.05 for 5%
     */
    private double z = 1.96, p = 0.5, e = 0.05;

    public Sampling(double initialSamplingRate, long cycleLengthInMilliseconds, boolean adaptiveSamplingRate) {
        this.samplingRate = initialSamplingRate;
        this.adaptiveSamplingRate = adaptiveSamplingRate;
        this.cycleLengthInMilliseconds = cycleLengthInMilliseconds;
        this.binomialDistSampling = new BinomialDistribution(1, samplingRate);
        startMonitoringCycle();
    }

    private Object binomialDistSamplingLock = new Object();
    private void resetSamplingDistribution(){
        synchronized (this.binomialDistSamplingLock) {
            this.binomialDistSampling = new BinomialDistribution(1, samplingRate);
        }
    }

    public boolean simpleSamplingDecision(){
        synchronized (this.binomialDistSamplingLock) {
            return binomialDistSampling.sample() == 1; // sampling rate evaluation
        }
    }

    public boolean samplingDecision(Granularity granularity, long executionTime) {
        if (population.getTotalItems() == 0)
            startTime = System.currentTimeMillis();
        population.addItem(granularity);

        if (performanceBaselineEnabled) {
            return false;
        }

        boolean simpleSamplingDecision = simpleSamplingDecision();
        if (adaptiveSamplingRate
                    && simpleSamplingDecision
                    && population.getProportion(granularity) >= sample.getProportion(granularity)
        ) // sample has not enough items of that granularity compared to the population)
            {
                return true;
            }
        return simpleSamplingDecision;
    }

    public boolean isReady() {
        double decayingConfidenceFactor = decayingConfidenceFactor(getMonitoringCycleTime());
        boolean hasMinimumSize = sample.getTotalItems() > getMinimumSampleSize(z - (z * decayingConfidenceFactor));
        boolean hasSameProportion = isSameProportion(decayingConfidenceFactor);
        boolean hasComparedMean = tTestEvaluation(decayingConfidenceFactor);

        return adaptiveSamplingRate
                    // margin of error is lower than threshold
//                    && getSampleSizeErrorMargin(z * decayingConfidenceFactor) < e
                    // the sample has the min sample size based on the population
                    && hasMinimumSize
                    // proportion test
                    && hasSameProportion
                    // t-test
                    && hasComparedMean;
    }

    private Object samplingRateLock = new Object();
    public void adaptSamplingRate() {
        synchronized (samplingRateLock) {
            if (this.sampledDataSet.isEmpty()) {
                logger.info("No sampled data, doing nothing...");
                //if no impact, increase by 1%
//                samplingRate += 0.01;
//
//                if (samplingRate > 1)
//                    samplingRate = 1;
//
//                logger.info("New sampling rate: {}", samplingRate);
//                this.resetSamplingDistribution();
                return;
            }

//            this.performanceBaselineDataSet.
//
//            lowestPerformanceBaselineDataSet
//            Apdex apdex = this.performanceBaselineDataSet.getApdexResults(this.sampledDataSet, this.lastSampledTimes);
            Apdex apdex = this.performanceBaselineDataSet.getApdexResultsPerEvent(this.sampledDataSet);
            double impact = 1 - ((apdex.getSatisfied() + 0.5 * apdex.getTolerated()) / apdex.getN());

            //if we have just 1 tolerated, the impact will not be zero anymore
            if (impact <= 0.1) {
                logger.info("No monitoring impact detected: {}, increasing the sampling rate...", impact);
                //if no impact, increase by 10%
                samplingRate += 0.1;
            } else
                //otherwise stays the same - not necessary here
                if (impact > 0.1 && impact <= 0.2) {
                    logger.info("Minimal monitoring impact detected: {}, keeping it the same...", impact);
                } else if (impact > 0.2) {
                    double reduction = impact - 0.2;
                    logger.info("Monitoring impact detected: {}, decreasing the current sampling rate {} by {}%", impact, samplingRate, reduction);
//                logger.info("{}, {}, {}", apdex.getSatisfied(), apdex.getTolerated(), apdex.getN());
//                logger.info("{}", this.performanceBaselineDataSet.getOverallAvg());
//                logger.info("{}", this.performanceBaselineDataSet.getOverallStd());
//                logger.info("{}", this.performanceBaselineDataSet.getTotalItems());

                    //reduce by the amount of overhead
                    samplingRate = samplingRate - (samplingRate * (reduction / 1d));
                }

            if (samplingRate < 0)
                samplingRate = 0;

            if (samplingRate > 1)
                samplingRate = 1;

            //update the binomial with the new sampling rate distribution
            resetSamplingDistribution();
            logger.info("New sampling rate: {}", samplingRate);
        }
    }

    public void addPerformanceBaselineItem(Granularity granularity, long executionTime) {
        if(this.performanceBaselineDataSet.getTotalItems() < minimumSampleSize) {
            this.performanceBaselineDataSet.addItem(granularity, executionTime);
        }
    }

    DescriptiveStatistics lastSampledTimes = new DescriptiveStatistics(1200);
    public void addSampledItem(Granularity granularity, long startTime) {
        sample.addItem(granularity);

        DescriptiveStatistics statistics = sampledDataSet.getOrDefault(granularity, new DescriptiveStatistics());
        long time = System.nanoTime() - startTime;
        statistics.addValue(time);
        lastSampledTimes.addValue(time);
        sampledDataSet.put(granularity, statistics);
    }

    public long getMonitoringCycleTime(){
        return (System.currentTimeMillis() - startTime);
    }

    public boolean isPerformanceBaselineEnabled() {
        return performanceBaselineEnabled;
    }

    public double decayingConfidenceFactor(long timeInMilliseconds){
        synchronized (decayingPrecisionLock) {
            return new BigDecimal(decayingPrecision.value(timeInMilliseconds))
                    .setScale(4, BigDecimal.ROUND_FLOOR).doubleValue();
        }
    }

    private boolean tTestEvaluation(double decayingConfidenceFactor) {
        SummaryStatistics sampleAsDescriptiveStatistics = sample.getAsDescriptiveStatistics();
        if (sampleAsDescriptiveStatistics.getN() < 2) return true;

        if (sampleAsDescriptiveStatistics.getVariance() == 0) return true;

        SummaryStatistics populationAsDescriptiveStatistics = population.getAsDescriptiveStatistics();
        double popMean = populationAsDescriptiveStatistics.getMean();

        //for some reason, t-test returns false when the sets are exactly the same...
        if (sample.getTotalItems() == population.getTotalItems())
            return true;

        double significanceLevel = 0.5 - (0.5 * decayingConfidenceFactor);
        if (significanceLevel == 0.5) //maximum cycle time reached
            return true;
        else {
            //To test the (one-sample t-test - compare with the population mean)
            // hypothesis sample mean = mu at the 95% level
            return TestUtils.tTest(popMean,
                    sampleAsDescriptiveStatistics,
                    0.5 - (0.5 * decayingConfidenceFactor));
        }
    }

    //sample proportion is the same as population
    private boolean isSameProportion(double decayingConfidenceFactor) {
        return population.getGranularities().stream().allMatch(
                granularity -> {
                    double popProportion = population.getProportion(granularity);
                    double samProportion = sample.getProportion(granularity);
                    double error = popProportion - (popProportion * decayingConfidenceFactor);

                    return samProportion <= popProportion + error &&
                            samProportion >= popProportion - error;
                });
    }

    private long getMinimumSampleSize(long n) {
        return getMinimumSampleSize(n, z);
    }

    private long getMinimumSampleSize(double precision) {
        return getMinimumSampleSize(population.getTotalItems(), precision);
    }

    private long getMinimumSampleSize(long n, double precision) {
        if (n <= 1) return 0;
        long n_inf = (long) ((Math.pow(precision, 2) * p * (1 - p)) / Math.pow(e, 2));
        return n_inf / (1 + ((n_inf - 1) / n));
    }

    private double getSampleSizeErrorMargin(double precision) {
        if (population.getTotalItems() <= 1) return 0;
        double e_n_inf = Math.sqrt((Math.pow(precision, 2) * p * (1 - p)) / sample.getTotalItems());
        return e_n_inf * Math.sqrt((population.getTotalItems() - sample.getTotalItems()) / (population.getTotalItems() - 1));
    }

    private Object decayingPrecisionLock = new Object();
    public void startMonitoringCycle() {
        synchronized (decayingPrecisionLock) {
            this.decayingPrecision = new ExponentialDecayFunction(1, 0.001, cycleLengthInMilliseconds);
        }
        this.sample.clear();
        this.population.clear();
        this.sampledDataSet.clear();
        this.startTime = System.currentTimeMillis();
        logger.info("Monitoring is reset...");
    }

    public void endMonitoringCycle() {
        logger.info("Adaptive Sampling Monitoring Cycle Finished - Sample traces: {}", getSample().getTotalItems());
        logger.info("Adaptive Sampling Monitoring Cycle Finished - Population traces: {}", getPopulation().getTotalItems());
        startMonitoringCycle();
    }

    private Long minimumSampleSize;
    public void managePerformanceBaseline() {
        if (performanceBaselineEnabled) { //is it already enabled?
            if (this.performanceBaselineDataSet.getTotalItems() >= minimumSampleSize) { //got enough traces for PB
                logger.info("Collected performance baseline of {} traces", this.performanceBaselineDataSet.getTotalItems());
                performanceBaselineEnabled = false;
                minimumSampleSize = null;
//                lastFourPerformanceBaselineDataSets.add(this.performanceBaselineDataSet);
                adaptSamplingRate(); //adapt the sampling rate
                this.performanceBaselineDataSet.clear();
            }
            return;
        }

        double chance = new BinomialDistribution(1, 0.3d).sample();
        if (chance == 1) {
            minimumSampleSize = getMinimumSampleSize(this.population.getTotalItems());
            if (minimumSampleSize > 0) {
                logger.info("Enabling performance baseline that needs {} traces.", minimumSampleSize);
                performanceBaselineEnabled = true;
            }
        }
    }

    public FrequencyDataSet getSample() {
        return sample;
    }

    public FrequencyDataSet getPopulation() {
        return population;
    }

    public Map<Granularity, DescriptiveStatistics> getSampledTraces() {
        return sampledDataSet;
    }

    public double getSamplingRate() {
        return samplingRate;
    }

    public boolean isAdaptiveSamplingRate() {
        return adaptiveSamplingRate;
    }
}